Generalized Eigenvalues of Nonsquare Pencils with Structure

نویسندگان

  • Pablo Lecumberri
  • Marisol Gómez
  • Alfonso Carlosena
چکیده

This work deals with the generalized eigenvalue problem for nonsquare matrix pencils A − λB such that matrices A,B ∈ MC (m×n) show a given structure. More precisely, we assume they result from removing the first row of some matrix G ∈ MC ((m+1) , n) in the case of A, and its last row in the case of B. This structured generalized eigenvalue problem can be found in signal processing methods and in the numerical computation of the greatest common divisor (GCD) of polynomials. Traditional methods for solving the problem (A− λB)v = 0 do not yield valid solutions when the data are not exact, as is often the case in real applications. In this work we adopt a minimal perturbation approach. Taking into account the structure of the matrices involved, we develop a simple algorithm for the computation of the generalized eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Eigenvalue Problem for Nonsquare Pencils Using a Minimal Perturbation Approach

This work focuses on non-square matrix pencils A − λB where A,B ∈ Mm×n and m > n. Traditional methods for solving such nonsquare generalized eigenvalue problems (A−λB)v = 0 are expected to lead to no solutions in most cases. In this paper we propose a different treatment; We search for the minimal perturbation to the pair (A,B) such that these solutions are indeed possible. Two cases are consid...

متن کامل

On the determination of eigenvalues for differential pencils with the turning point

In this paper, we investigatethe boundary value problem for differential pencils on the half-linewith a turning point. Using a fundamental system of solutions, wegive a asymptotic distribution of eigenvalues.

متن کامل

On the Least Squares Approximation of Symmetric Definite Pencils Subject to Generalized Spectral Constraints

A general framework for the least squares approximation of symmetric de nite pencils subject to generalized eigenvalues constraints is developed in this paper This approach can be adapted to di erent applications including the inverse eigenvalue problem The idea is based on the observation that a natural parameterization for the set of symmetric de nite pencils with the same generalized eigenva...

متن کامل

On the condensed density of the generalized eigenvalues of pencils of Gaussian random matrices and applications

Pencils of Hankel matrices whose elements have a joint Gaussian distribution with nonzero mean and not identical covariance are considered. An approximation to the distribution of the squared modulus of their determinant is computed which allows to get a closed form approximation of the condensed density of the generalized eigenvalues of the pencils. Implications of this result for solving seve...

متن کامل

Eigenvectors and minimal bases for some families of Fiedler-like linearizations

In this paper we obtain formulas for the left and right eigenvectors and minimal bases of some families of Fiedler-like linearizations of square matrix polynomials. In particular, for the families of Fiedler pencils, generalized Fiedler pencils, and Fiedler pencils with repetition. These formulas allow us to relate the eigenvectors and minimal bases of the linearizations with the ones of the po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008